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RasGRP1 overexpression in T-ALL increases basal nucleotide
exchange on Ras rendering the Ras/PI3K/Akt pathway
responsive to protumorigenic cytokines
O Ksionda1, AA Melton1,2, J Bache3, M Tenhagen1, J Bakker1, R Harvey4, SS Winter5, I Rubio3,6 and JP Roose1

Ras GTPases are activated by RasGEFs and inactivated by RasGAPs, which stimulate the hydrolysis of RasGTP to inactive RasGDP.
GTPase-impairing somatic mutations in RAS genes, such as KRASG12D, are among the most common oncogenic events in metastatic
cancer. A different type of cancer Ras signal, driven by overexpression of the RasGEF RasGRP1 (Ras guanine nucleotide-releasing
protein 1), was recently implicated in pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients and murine models, in which
RasGRP1 T-ALLs expand in response to treatment with interleukins (ILs) 2, 7 and 9. Here, we demonstrate that IL-2/7/9 stimulation
activates Erk and Akt pathways downstream of Ras in RasGRP1 T-ALL but not in normal thymocytes. In normal lymphocytes,
RasGRP1 is recruited to the membrane by diacylglycerol (DAG) in a phospholipase C-γ (PLCγ)-dependent manner. Surprisingly, we
find that leukemic RasGRP1-triggered Ras-Akt signals do not depend on acute activation of PLCγ to generate DAG but rely on
baseline DAG levels instead. In agreement, using three distinct assays that measure different aspects of the RasGTP/GDP cycle, we
established that overexpression of RasGRP1 in T-ALLs results in a constitutively high GTP-loading rate of Ras, which is constantly
counterbalanced by hydrolysis of RasGTP. KRASG12D T-ALLs do not show constitutive GTP loading of Ras. Thus, we reveal an entirely
novel type of leukemogenic Ras signals that is based on a RasGRP1-driven increased in flux through the RasGTP/GDP cycle, which is
mechanistically very different from KRASG12D signals. Our studies highlight the dynamic balance between RasGEF and RasGAP in
these T-ALLs and put forth a new model in which IL-2/7/9 decrease RasGAP activity.

Oncogene advance online publication, 9 November 2015; doi:10.1038/onc.2015.431

INTRODUCTION
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive
cancer associated with poor prognosis, especially after disease
relapse (reviewed in Aifantis et al.1). The current line of treatment
consists of cytotoxic chemotherapy with many side effects.
Potential targeted treatment requires detailed understanding of
the leukemogenic signals.
Despite being extremely aggressive in vivo, leukemic blasts

grow very poorly in vitro unless supplemented with bone marrow
stromal cells or exogenous cytokines. Cytokines such as
interleukin-7 (IL-7) or IL-2 produced by bone marrow stromal cells
and which signal through the common γ-chain receptor are
contributing to the survival and proliferation of leukemic blasts.2–4

We have recently reported that a Ras activator, RasGRP1,
cooperates with cytokines to drive leukemogenesis in T-ALL,
highlighting RasGRP1 as one critical component.5

RasGRP1 belongs to the RasGRP (Ras guanine nucleotide-
releasing protein) family of proteins that act as nucleotide
exchange factors for Ras (reviewed in Ksionda et al.6). RasGRP1
expression is best described in immune cells: it is highly abundant
in T cells and to lesser extent in B, NK and mast cells. RasGRP1 is
critical in the regulation of thymocytes as RasGRP1-deficient
mice exhibit a profound T-cell developmental block,7 whereas
dysregulation of RasGRP1 expression leads to T-ALL in various

mouse models and is frequently observed in pediatric T-ALL
patients.5,6,8–10 The molecular connections between cytokine
receptors, RasGRP1, and downstream effectors in the Ras pathway
have remained undefined.
The canonical RasGRP1-Ras signaling pathway has been best

studied in the context of T-cell receptor (TCR) stimulation. In short,
TCR crosslinking results in the activation of a signaling cascade
involving several kinases (namely, Lck and Zap70) and assembly of
a signaling complex containing the adaptor molecule LAT.
LAT has several tyrosine sites, which serve as docking sites for
phospholipase C-γ1 (PLCγ1), among other molecules. Upon
activation, PLCγ1 converts membrane-bound phosphatidylinositol-
bisphosphate to release two secondary messengers: diacylglycerol
(DAG) and inositol-triphosphate. Inositol-triphosphate initiates
cytoplasmic calcium flux (reviewed in Feske et al.11), whereas
DAG recruits RasGRP1 to the membrane via binding to the C1
domain of RasGRP1 and recruits members of protein kinase C
kinase family, notably protein kinase Cθ, which can phosphorylate
RasGRP1 to further enhance its function to catalyze GDP to GTP
exchange on Ras (reviewed in Ksionda et al.6).
Our recent biophysical and cellular signaling work provided

more details into the mechanisms of RasGRP1 regulation and
activation.12 RasGRP1’s crystal structure revealed that this RasGEF
exists in an autoinhibited, dimeric state. A calcium-induced
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conformational change releases RasGRP1 from its autoinhibition
and allows for binding of the C1 domain to DAG and for
binding of Ras to RasGRP1’s catalytic pocket. Our insights
from the RasGRP1 structure, RasGRP1’s overexpression in
T-ALL and the novel RasGRP1-dependent cytokine-induced
Ras activation recently identified in T-ALL5 inspired us to
investigate the mechanism of RasGRP1-Ras signals in cytokine-
responsive T-ALL.

RESULTS
Cytokine-induced Ras activation is unique to T-ALL
T-ALL cell lines with high RasGRP1 expression robustly activate Ras
when stimulated with cytokines in a RasGRP1-dependent
manner,5 pointing to a potential cytokine receptor-RasGRP1-Ras
pathway. To compare directly the effects of TCR versus cytokine
stimulation on Ras activation, we stimulated two T-ALL lines
(1156S-O and T-ALL C6 cell lines) that express high levels of
RasGRP15 by either crosslinking CD3 and CD4 (TCR stimulation) or
by exposure to a cocktail of IL-2, -7 and -9 (cytokine stimulation;
ILs) and subjected cells to RasGTP pulldown assays. Both types of

stimuli demonstrated roughly similar increases in RasGTP levels
when analyzed side by side (Figures 1a and b). As comparison, we
subjected a different T-ALL cell line (98) to the same assay. T-ALL
line 98 does not overexpress RasGRP1 nor has it any leukemia
virus insertions in genes that are known to influence the Ras
pathway.5 As shown in Figure 1c, T-ALL 98 cells do accumulate
some RasGTP upon IL stimulation, albeit to much lesser extent as
lines that overexpress RasGRP1.
Based on cell surface marker expression, T-ALL blasts resemble

developing thymocytes.1,5 Therefore, we next investigated if
normal thymocytes also use the IL-RasGRP1-Ras pathway. In
contrast to our T-ALL cell lines, ex vivo thymocytes activated Ras
after TCR stimulation but not following exposure to cytokines
(Figure 1d). Signal transducer and activator of transcription 5
phosphorylation (pSTAT5), a well-characterized signal induced by
cytokine receptors containing the common γ-chain, is shown here
as a positive control to demonstrate proper IL-2/7/9 stimulation of
thymocytes (Figure 1d). Therefore, T-ALL cells with RasGRP1
overexpression—and cell surface marker combinations reminis-
cent of developing thymocytes—have the unique ability to
activate Ras in response to cytokine receptor stimulation
(Figure 1e).
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Figure 1. Cytokine-induced Ras activation is unique to T-ALL. (a–d) Western blot analysis of Ras pulldown assays performed either in Rasgrp1
T-ALL cell lines (a and b), non-RasGRP1-overexpressing T-ALL cell line 98 (c) or primary thymocytes (d). Cells were serum starved and treated
with anti-CD3 and anti-CD4 followed by crosslinking antibodies or stimulated with IL-2/7/9 for the indicated amount of time. The abundance
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Distinct, RasGRP-1-dependent signals through the Akt pathway in
cytokine-stimulated T-ALL
RasGTP signals to various effector kinase pathways to exert its
cell biological effect on survival and proliferation.13 To compare
effector activation following ILR-RasGRP1 versus ‘canonical’
TCR-RasGRP1 signals, we exposed T-ALLs with high RasGRP1 to
each of the stimuli and examined the activation status of two
well-characterized Ras effectors, Erk1/2 and PI3K. TCR stimulation
resulted in transient Erk1/2 and sustained Akt phosphorylation
(phospho-Akt serving as a surrogate for PI3K activation) in
T-ALLs (Figure 2a). Cytokines (IL-2, -7 and -9) activated the
PI3K/Akt pathway in T-ALL cells to a similar degree as TCR
stimulation, whereas activity through the RasGTP-Raf-MEK-Erk
pathway was modest (Figure 2b). As before, phosphorylation of
STAT5 was measured as a positive control for IL stimulation
(Figure 2b).
Given that cytokines appear to preferentially trigger Ras-PI3K/

Akt over Ras-Raf-MEK-Erk pathway in T-ALL, we sought to explore
if TCR and IL-induced Akt activation depends on RasGRP1. We
took advantage of previously generated cell lines with reduced
RasGRP1 levels via stable expression of RasGRP1 short hairpin RNA
(shRNA).5 Knockdown of RasGRP1 severely impairs both TCR- and
IL-induced Akt phosphorylation without affecting cytokine-
depending pSTAT5 levels (Figures 2c and d, respectively),
revealing that activation of PI3K/Akt downstream of both receptor
systems depends on RasGRP1.
Our RasGTP pulldown assay (Figure 1d) indicated that the

IL-RasGRP1-Ras pathway is not functional in normal thymocytes.
Thymocytes consist of four major subsets that reflect unique
developmental stages and which differ in the expression levels
of cytokine receptors (immgen.org). It is possible that only a
minor population of cells activates Ras and Ras effector
pathways downstream of cytokine receptors and that this
signal is missed because of the detection limitations of the
experimental method that assays population averages. To
overcome these limitations and to confirm that normal
thymocytes do not activate Ras and its effectors downstream
of cytokine receptors, we took advantage of flow cytometry.
Flow cytometric analysis of signaling events induced by TCR
stimulation, similar to ERK phosphorylation, has been used by
many groups including our own.14 We first separated thymo-
cytes into double-negative CD4−CD8−, double-positive CD4+

CD8+ and single-positive CD4+ or CD8+ cell populations
(Figure 2e) where single-positive CD8+s were gated on TCRβhigh

to exclude intermediate single-positive cells. Stimulation with
IL-2/7/9 resulted in phosphorylation of STAT5 in all thymic
subsets except double-positive cells, consistent with reported
receptor expression levels (immgen.org) (Figure 2e, bottom
panel). We then looked at the activation of pErk1/2 and pAkt as
a surrogate measure of Ras activity. We did not observe
increases in pErk or pAkt upon cytokine stimulation in any of
the subsets, suggesting that Ras is not activated after cytokine
receptor activation by IL-2/7/9 in normal thymocytes (Figure 2e,
top and middle panel). All thymic populations increased pErk1/2
in response to phorbol myristate acetate stimulation (Figure 2e,
top panel, blue histogram), which demonstrated that the lack of
pErk induction after cytokine exposure was not due to technical
inability to detect pErk.
Thus, both TCR- and ILR-triggered Ras effector pathways are

operational in T-ALL cells, but cytokine stimulation triggers Akt
activation more robustly than Erk activation and does so in a
RasGRP1-dependent manner (Figure 2f). Based on these results,
we hypothesized that mechanisms of RasGRP1-driven Ras
activation may differ between TCR- and cytokine-stimulated
T-ALL cells.

Cytokine receptor-RasGRP1-Ras signaling does not require acute
PLCγ1 activation
We next sought to explore if RasGRP1 couples to cytokine
receptors in leukemic T-ALL via PLCγ1 as it does in canonical
RasGRP1-Ras signaling induced by TCR stimulation. Pharmacological
inhibition of PLCγ with a small-molecule inhibitor U73122 resulted
in a profound decrease in RasGTP, confirming that TCR-induced
RasGTP in T-ALL cells indeed depends on PLCγ1 activity
(Figure 3a). In agreement with canonical RasGRP1 signaling, TCR
stimulation resulted in induction of both PLCγ1 and RasGRP1
phosphorylation in T-ALL cells (Figure 3b) and TCR-induced
RasGRP1 phosphorylation was decreased following PLCγ inhibitor
treatment (Figure 3c).
We next asked if similar second messengers connect RasGRP1

and cytokine receptors. In contrast to TCR stimulation where
PLCγ inhibitor treatment almost completely abrogated RasGTP
induction, we observed only a modest effect of the PLCγ inhibitor
on cytokine-induced RasGTP (Figure 3d and Supplementary
Figure 2). Consistent with the reduced requirement for acute
PLCγ1 activation, cytokine treatment did not increase PLCγ1 or
RasGRP1 phosphorylation above baseline levels in either of two
T-ALL cell lines tested (Figure 3e). Also, pharmacological inhibition
of PLCγ1 showed no effect on RasGRP1 phosphorylation following
cytokine stimulation (Figure 3f). Of note, we avoided further
increasing the concentration of the PLCγ inhibitor or extending
the incubation time before stimulation, as these induced
nonspecific cell toxicity.
The above data suggest that cytokines do not couple to PLCγ1;

however, phosphorylation of PLCγ1 is only a surrogate for
activation rather than a direct measurement of activity. To test
more definitively that cytokine receptors do not induce PLCγ1
enzymatic activity in T-ALL cells, we evaluated rises in intracellular
calcium as a direct effect of inositol-triphosphate production,
which is a routine assay used by many to determine TCR-triggered
calcium fluxes. Consistent with the data in Figures 3d and f, we did
not observe any detectable increase in calcium levels upon
cytokine stimulation, even within 10 min of recording (Figure 3g,
red tracing), whereas TCR stimulation resulted in a rapid rise in
intracellular calcium (Figure 3g; blue tracing). Taken together,
these data demonstrate that while RasGRP1-overexpressing T-ALL
cells maintain the ability to respond to TCR stimulation that
requires PLCγ1 activation, the IL-RasGRP1-Ras pathway does not
require receptor-induced PLCγ1 activity.

RasGRP1 couples to the cytokine receptor via basal DAG
Binding of calcium to the EF hands of the RasGRP1 protein
releases autoinhibition through allosteric changes.12 NMR scatter-
ing data indicates that autoinhibition of this RasGEF is not
absolute and that there is some level of flexibility in the basal state
without calcium signals12 (Figure 4a, left panel).
These structural aspects together with our observations that

basal, low-level PLCγ1 and RasGRP1 phosphorylation can be
detected in T-ALL cells (Figure 3e) prompted us to hypothesize
that basal levels of DAG are sufficient for RasGRP1-dependent Ras
activation in cytokine-stimulated T-ALL cells. To test this hypoth-
esis, we used the DAG kinase (DGK) inhibitor R59945 to
manipulate DAG levels without changing Ca2+ levels (Figure 4a,
right panel). DGKs convert DAG to phosphatidic acid and
pharmacological inhibition of DGK results in increased DAG
levels15 and increased RasGTP in response to TCR stimulation.16

Treatment of T-ALL cells with DGK inhibitor (R59945) resulted in
a dose-dependent induction of pAkt and pErk signals, in complete
absence of cytokine receptor or other stimulatory input
(Figures 4b and c). These findings are consistent with our previous
mathematical modeling, which predicted that in the presence of
high RasGRP1 concentration increasing DAG levels result in
spontaneous Ras pathway activation.5 These results also reveal
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Figure 2. TCR and cytokines trigger RasGRP1-Ras effector pathways in T-ALL. (a and b) Western blot analysis of phospho-Akt (S473) and
phospho-Erk1/2 (Thr202/Tyr204) in Rasgrp1 T-ALL cell lines stimulated with anti-CD3 and anti-CD4 antibodies followed by crosslinking (a) or
cytokines (b) for indicated amount of time. The abundance of phosphoprotein was arbitrarily set at 1.0 for 0min time point by normalizing to
the abundance of α-tubulin. Phospho-STAT5 (Tyr 694) was used as a control for stimulation efficiency in cytokine-treated samples. (c and d)
Western blot analysis of phospho-Akt (S473) and RasGRP1 abundance in 1156S-O-GFP (control) and 1156-S-O cell lines where RasGRP1
knockdown was achieved via stable expression of RasGRP1 shRNA. Cells were either treated with anti-CD3 and anti-CD4 followed by
crosslinking antibodies (c) or stimulated with cytokines (d) for the indicated amount of time. Phospho-STAT5 (Tyr 694) was used as a control
for stimulation efficiency in cytokine-treated samples. Quantification was carried out as in (a) normalizing to the amount of α-tubulin. (e). Flow
cytometry analysis of phospho-Erk1/2 (Thr202/Tyr204), phospho-Akt (S473) and phospho-STAT5 (Tyr 694) in wild-type thymocytes (from 8- to
10-week-old C57BL/6J females) stimulated with IL-2/7/9 or phorbol myristate acetate (PMA). Scatter plot on the left shows gating of double-
negative (DN; CD4−CD8−), double-positive (DP; CD4+CD8+), CD8 and CD4 single-positive cells. Histograms on the right show levels of
phosphoproteins in gated populations. Numbers represent values of geometric mean for the indicated time point. Figure shows one out of
two experiments. Each experiment was performed with three mice. All panels in this figure are representative examples of two or three
independent experiments. (f) Model of downstream Ras pathway activation through RasGRP1 after either TCR or cytokine stimulation.
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that overexpressed RasGRP1 couples to Ras in the basal state,
without the requirement for receptor signals.
We subsequently asked if increased levels of baseline DAG

could enhance cytokine-induced Ras effector activation. Indeed,
we observed that cytokine-induced pAkt was increased after
augmenting concentrations of DAG by treatment with DGK

inhibitor (Figure 4d). Last, we investigated if low levels of cytokine
input cooperates with increased baseline DAG levels and
determined that R59945 concentrations as low as 100 nM
potentiated cytokine-induced pAkt (Figure 4e). Taken together,
these results indicate that when expressed at high levels, similar to
a subset of T-ALL leukemias,5 RasGRP1 responds to baseline
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N (right panel) that were stimulated with anti-CD3/CD4 and crosslinking antibodies (blue trace) or with IL-2/7/9 (red trace). Cells were
stimulated after 20 s baseline was recorded. All panels in this figure are representative examples of three independent experiments.
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of DGK inhibitor (R59945) for 30min before analysis. DMSO-treated cells served as vehicle controls. Numbers represent median fluorescence
intensities. A representative example of three independent experiments is shown. (d) Heatmap depicting phospho-Akt (S473) in 1713S-N
T-ALL cell line treated with the DGK inhibitor, R59945, at indicated concentrations for 30min before stimulation with IL-2/7/9 for the indicated
duration in minutes. (e) Heatmap depicting phospho-Akt (S473) in 1713S-N T-ALL cell line treated with DGK inhibitor, R59945, at the indicated
concentrations for 30 min before stimulation for 5min with cytokines. IL-2/7/9 were used at various concentrations (1/10th standard, 1/5th
standard, 1 × standard cytokine dilutions compared with concentrations of cytokines used throughout this study). Panels d and e are
representative examples of two independent experiments completed in duplicate.
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cellular levels of DAG to activate Ras effector pathways, which can
be further induced by cytokine stimulation.

Broad coverage of expressed RasGAP molecules in T-ALL
Given that our experiments in Figures 3 and 4 demonstrate that
RasGRP1 couples to basal DAG, one would predict that T-ALL cells
with RasGRP1 overexpression efficiently accumulate RasGTP in the
unstimulated state. However, we previously established that
RasGRP1 T-ALLs display only very modest increases in the basal
levels of RasGTP. This contrasted the high levels of baseline
RasGTP observed in T-ALL with oncogenic Ras mutations (such as
KRasG12D) that render Ras protein insensitive to GAP action.5 Net
RasGTP levels are the sum of GTP loading and GTP hydrolysis. We
postulated that T-ALLs may contain high steady-state RasGAP
activity to counteract the increased RasGRP1 activity in resting
cells. To gain more insight into this equilibrium, we first looked at
the expression of the two best characterized RasGAPs, NF1 and
p120RasGAP. In a panel of 11 human T-ALL cell lines, all cell lines

expressed both NF1 and p120RasGAP at roughly similar levels as
determined by western blot analysis (Figure 5a). The Jurkat T-cell
lymphoma and JPRM441 cell line, a Jurkat derivate expressing
only 10% of normal RasGRP1 levels,17 revealed similar NF1 and
p120RasGAP levels (Figure 5a), indicating that RasGRP1 does not
influence expression levels of these RasGAPs.
We reported that RasGRP1 reveals a large 128-fold range in

mRNA expression levels among 107 primary T-ALL samples of
pediatric patients.5 Here, we plotted mRNA levels for 10 RasGAP
family members reported to be expressed in lymphocytes (King
et al.,18 immgen.org) from the same microarray data of 107 T-ALL
patients. We were struck to find that the primary samples
expressed all RasGAP family members with only relatively small
variations in mRNA expression between patients (Figure 5b).
Additionally, expression of individual RasGAPs did not correlate
with clinical outcome (Supplementary Figure 1). Given the above
expression data and the critical biologic importance of tight
regulation of RasGTP levels in cells, the regulation of the
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RasGTP-RasGDP equilibrium is unlikely to be regulated by a single
RasGAP family member but more likely by combined RasGAP
activity.

Increased RasGRP1 levels lead to high rate of flux through
RasGDP/RasGTP cycle
To investigate directly the equilibrium between RasGDP/GTP and
the equilibrium between RasGEF and RasGAP activity in the

setting of RasGRP1 overexpression, we compared and contrasted
three distinct Ras assays.
First, we expanded on our published data with the traditional

RasGTP pulldown assay, confirming that increased RasGRP1
expression does not result in high levels of RasGTP in the basal
state, especially when compared with T-ALL cell lines that harbor
KRasG12D mutation (Figures 6a).5 However, the pulldown assay
does not provide any insights regarding the rate of RasGTP/GDP
cycling (Figure 6a). To gain insight into the latter, we took
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advantage of a Ras nucleotide exchange assay19 to evaluate the
rate of GTP loading (Figure 6b). Briefly, cells are permeabilized
with digitonin to allow entry of radioactive α-phosphate-labeled
GTP. This radiolabeled GTP is loaded onto Ras and can be
hydrolyzed into RasGDP without loss of the radiolabeled nucleo-
tide. Cells are lysed and Ras-bound radionucleotide is quantified
and represents the amount of GTP loaded onto Ras as a function
of time (Figure 6b).
We first investigated loading of GTP into Ras in three non-

immune cell lines (Cos7, Rat1 and HeLa), which lack or express low
levels of RasGRP exchange factors.17,20,21 In agreement with
previously reported data for Cos7 cells,21 all three cell lines show a
slow rate of GTP loading and never reached plateau within the
experimental time frame (Figure 6c). In contrast, in immune cells
radioactivity levels quickly increased and were saturated at
roughly 2 min, indicating that all Ras molecules had experienced
one round of nucleotide exchange. This result confirms previous
findings for T cells22,23 and suggests that immune cells that
express RasGRP family members (RasGRP4 in U937 and RasGRP1
in Jurkat and human primary T cells; Roose et al.17) have
exceptionally high basal rates of nucleotide exchange on Ras
(some 30-fold higher than the intrinsic exchange rate of Ras24)
(Figure 6d).
Focusing selectively on overexpression of RasGRP1 in leukemia,

we find the rapid GTP loading in the Jurkat T-cell lymphoma line is
dependent on this RasGEF as the rate of radionucleotide loading is
significantly decreased in RasGRP1-deficient JPRM441 cells
(Figure 6e, left graph). Similar to the results with Jurkat, murine
T-ALL cell lines with high RasGRP1 expression (1156 and C6)
revealed exceptionally high exchange rates with rapid accumula-
tion of radioactive Ras and saturation of the experimental system
within 2 min of incubation (Figure 6e, middle and right graph; blue
lines). In contrast, two cell lines with GTPase-crippling KRasG12D

mutations (T-ALL 15 and 9) had very slow exchange rates
(Figure 6e, middle and right graph; green lines). Furthermore,
two additional T-ALL cell lines that do not have any known
insertions in genes involved in Ras signaling5 displayed slow rates
of GTP loading onto Ras (Figure 6e, middle and right graph; black
lines). To further prove the causal link between RasGRP1 and basal
nucleotide exchange on Ras, we knocked down RasGRP1 in the
high expressor line 1156S-O via shRNA. As shown in the far-right
graph in Figure 6e, stable knockdown of RasGRP1 in the 1156S-O
T-ALL line caused a marked reduction of nucleotide uptake by Ras
that was not seen in the GFP control 1156S-O line, confirming that
basal GTP loading of Ras in these T-ALL lines was driven by
RasGRP1. Collectively, these data demonstrate that high levels of

RasGRP1 expression in T-ALL cells lead to constitutively high
nucleotide exchange rates on Ras.
These data again argue for equally high basal RasGAP activity in

T-ALLs with RasGRP1 overexpression, given the minimally
increased steady-state levels of RasGTP. As a third assay, we
combined the permeabilization approach with the RasGTP
pulldown assay. We reasoned that loading T cells with the non-
hydrolyzable GTP analog GMppNHp should promote Ras activa-
tion solely via nucleotide exchange because RasGAP activity is
futile against Ras-GMppNHp. As shown in Figure 6f, Jurkat cells
permeabilized in the presence of GTP featured higher RasGTP
levels compared with the low-RasGRP1 derivative JPRM441, in
accordance with the notion that basal nucleotide uptake by Ras,
as driven by RasGRP1, is a prerequisite for the accumulation of
RasGTP. Importantly, when permeabilized in the presence of the
non-hydrolyzable GTP analog, GMppNHp-active Ras accumulation
rose markedly in Jurkat and also, albeit to a lesser extent, in
JPRM441s. Although GMppNHp is certainly likely to affect the
activity of other G proteins in the T cells, the simplest
interpretation of these data was that resting T-ALL cells harbor
high RasGAP activity, which is needed to balance the equally high
basal nucleotide exchange on Ras driven by RasGRP1.

DISCUSSION
We demonstrate that the cytokine receptor-RasGRP1-Ras pathway
is unique to T-ALL that overexpress RasGRP1, a feature observed in
approximately half of pediatric T-ALL patients.5 We also provide
evidence that dysregulated RasGRP1 uses basal DAG to anchor to
the membrane, is already phosphorylated and therefore ‘primed’
to facilitate GDP/GTP exchange on Ras. In agreement, we
uncovered constitutively high levels of GTP loading on to Ras
that occurs exclusively in the setting of RasGRP1 overexpression.
Analysis of Ras effectors revealed that in cytokine-stimulated

T-ALL, PI3K-Akt signals were more robustly induced than MEK/Erk.
Interestingly, we observed a strong reduction in pAkt levels in
T-ALL cell lines with RasGRP1 knockdown, and this effect was
much more pronounced than previously reported in thymocytes
(Figures 2c and d).25 The molecular mechanism for this differential
sensitivity of pAkt compared with pErk is unknown. PI3K but not
MEK is important for viability and cell cycle progression of T-ALL
blasts.26 Our observation that RasGRP1 preferentially couples to
PI3K-Akt signals combined with the fact that RasGRP1 is not
ubiquitously expressed suggest that targeting RasGRP1 may prove
to be an effective way to dampen PI3K signals in leukemic cells.

Figure 6. Overexpression of RasGRP1 leads to high rate flux through RasGDP/RasGTP cycle. (a) Scheme of traditional Ras pulldown assay that
measures net RasGTP levels and western blot analysis of RasGTP after Ras pulldown in RasGRP1 (1156S-O, 1713S-N and T-ALL C6) and KRasG12D

(T-ALL 9, TALL15) T-ALL cell lines. (b) Scheme of digitonin exchange assay that measures loading of GTP into Ras. In short, cells are
permeabilized with digitonin and loaded with radioactively labeled GTP nucleotide. GTP is labeled at the α position; therefore, after GAP-
mediated hydrolysis, the radioactive label is not released and Ras-bound radioactivity accumulates over time. Ras is then immunoprecipitated
and GTP loading quantified by scintillation counting. (c and d) Graphs depict rate of accumulation of radiolabeled guanine nucleotide in
counts per minute that was loaded onto Ras in the basal state over time as measured with the digitonin exchange assay. Assays were carried
out in a panel of cell lines that either do not express RasGRP proteins or have low expression of RasGRP1 and 3 (Cos7, Rat1, HeLa) (c) and
compared with cell lines that express high levels of RasGRP1 or 4 (Jurkats, human T cells, myeloid U937) (d). (e) Accumulation of radiolabeled
guanine nucleotide in counts per minute in resting cells on Ras as measured with the digitonin exchange assay in a panel of T-ALL cell lines.
Left panel compares human T-ALL line, Jurkat and its derivative JPRM441, which express low levels of RasGRP1; two middle panels compare
RasGRP1 T-ALL cell lines (1156, C6) with KRasG12D (T-ALL 15 and 9). Two T-ALL cell lines without known mutations in the Ras pathway (T-ALL 55
and 98) are shown as controls. Far right panel compares 1156S-O GFP cell line with 1156S-O cell line with stable shRNA-mediated knockdown
of RasGRP1 (1156 KD).5 Panels c–e are representative examples at least two independent experiments. (f) Biochemical RasGTP determination
in Jurkat T-ALL cell line and JPRM441 derivative expressing low levels of RasGRP1 treated with digitonin and loaded with either GTP or its non-
hydrolyzable GTP analog GMppNHp for the indicated periods of time. (g) A proposed model elucidating a potential tumor suppressor role of
RasGAPs in RasGRP1 T-ALL cells. Dysregulated RasGRP1 uses basal DAG to anchor to the membrane to perform exchange of GDP to GTP on
Ras. High loading of GTP is counterbalanced by increased activity and/or expression of RasGAPs to hydrolyze GTP back to GDP and maintain
low RasGTP levels. Cytokine receptor activation disrupts this cycle by acting on RasGAPs to decrease their activity resulting in the
accumulation of RasGTP in the cell.
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The collective results of our three distinct Ras assays reveal
rapid nucleotide loading of GTP into Ras in T-ALL with RasGRP1
overexpression, suggesting that even without receptor input
RasGRP1 can exert its function and the protein must ‘breathe’
enough to be released from its autoinhibited state and use cellular
DAG and Ca2+ for full activation (Figure 6e). Based on
mathematical modeling one consequence of high flux through
RasGDP/GTP cycle at basal state would be much faster accumula-
tion of RasGTP after receptor triggering as compared with the
settings with low basal flux.24

In light of our experimental observations, we have proposed a
model in which high loading of GTP into Ras by RasGRP1 is
counterbalanced by RasGAP-mediated hydrolysis to keep RasGTP
levels low under resting conditions (Figure 6g). Given that we
found no evidence of cytokine-induced RasGRP1 activation
(Figure 3e), it is a logical possibility that cytokines decrease
RasGAP activity in the leukemic cell, ultimately resulting in RasGTP
accumulation (Figures 1a and b and Figure 6g). It is possible that
other receptor systems such as granulocyte-colony-stimulating
factor or granulocyte–macrophage colony-stimulating factor
(reviewed in Ksionda et al.6) cooperate with RasGRP signaling in
a similar manner. This mode of GTPase activation, that is, via
receptor-induced inactivation of GAP, has been recently shown for
Rheb, a Ras-related GTPase, and some evidence points out that it
may also be the case for Ras (reviewed in Hennig et al.24 and
Laplante and Sabatini27). It has previously been shown that certain
growth factors such as platelet-derived growth factor or epidermal
growth factor induce proteolytic degradation of NF1, one of the
RasGAPs.28 However, we did not observe any change in levels of
NF1 or P120RasGAP after cytokine stimulation. Given that T-ALL
cells express many RasGAPs (Figure 5), dissecting the mechanisms
involved in both basal regulation of RasGTP/GDP and cytokine
receptor action in transformed lymphocytes will require new
genetic tools such as combination T-cell-specific knockout mice
for RasGAPs or CRISPR/cas9-mediated cell line models.
Our results strongly point to a role of RasGAPs as crucial

safeguards, especially in leukemic cells with dysregulated expres-
sion of RasGRP1. The mutational status of all RasGAPs has not
been explored in the context of T-ALL, but our results show that at
least 10 RasGAP family members are expressed in each of the
pediatric T-ALL samples analyzed (Figure 5). It appears that broad
coverage with different RasGAP proteins is required to counter-
balance Ras nucleotide loading. This idea is supported by studies
showing that T-lineage knockouts of NF1 or p120RasGAP had only
minor phenotype and did not result in T-ALL,29,30 but that their
combined deletion leads to the development of T-ALL.31 The
importance of RasGAPs is also highlighted by emerging data
showing that NF1 is mutated in both pediatric and adult T-ALL
patients.32–34 Interestingly, there seems to be an increased
instability of the Ras network evidenced by increased
co-occurrence of NF1 mutations with other RasGAPs or RasGEFs
in a wide range of human cancers.35 It would be interesting to
investigate whether high basal RasGRP1 activity would lead to
increased instability of the Ras network in T-ALL.
In summary, our findings document that overexpression of

RasGRP1 in a subset of T-ALLs effectively renders Ras and Ras
effector pathways in these leukemias responsive to pro-oncogenic
cytokines. We propose that overexpression of RasGRP1 and the
resulting high nucleotide exchange on Ras essentially create a
new signaling avenue for proleukemic cytokines that can provide
pro-oncogenic Ras signals in T-ALL. It is intriguing to speculate
that similar scenarios may apply to other Ras-dependent tumors.
For example, EGFR overexpression, as present in numerous solid
cancers, might work in an analogous manner to high RasGRP1
levels in leukemia to drive basal nucleotide exchange on Ras36,37

and to render Ras pathways in those cancers overresponsive to
alternate mitogenic factors.

MATERIALS AND METHODS
Cell lines
Murine T-ALL cell lines (1156S-O, 1156S-O-shRNA RasGRP1, 1156S-O-GFP,
1713S-N, T-ALL C6, T-ALL 9, T-ALL 15, T-ALL 55 and 98) were originally
generated and maintained as described in Hartzell et al.5 Human T-ALL cell
lines were cultured in RPMI 10% fetal bovine serum, penicillin and
streptomycin.

Antibodies
The following antibodies were used in this study: phospho-Akt (S473) (Cell
Signaling, Danvers, MA, USA; No. 4060), phospho-Erk1/2 (T202/Y204) (Cell
Signaling; no. 4377), phospho-STAT5 (Y694) (Cell Signaling; no. 9351),
phospho-PLCγ1 (Y783) (Invitrogen, Waltham, MA, USA; 44-696G), α-tubulin
(Sigma, St Louis, MO, USA; T6074), total Ras (clone RAS10) (Millipore,
Billerica, MA, USA; 05-516), neurofibromin (NF1) (Santa Cruz Biotechnol-
ogies, Dallas, TX, USA; sc-67), p120RasGAP (BD Biosciences, San Jose CA,
USA; 610040), anti-CD4 (GK1.5) (Alexa Fluor 488; eBiosciences, San Diego,
CA, USA), CD8 (53-6.7) PerCP Cy5.5 (BD Biosciences), TCRβ (H57-597) (APC
Biolegends, San Diego, CA, USA), and donkey anti-rabbit PE (711-116-152)
and donkey anti-rabbit APC (711-136-152) from Jackson ImmunoResearch
(West Grove, PA, USA). Murine RasGRP1 (m199) antibody was a gift from Dr
Jim Stone. To detect phospho-RasGRP1 (T184), we generated an antibody
against epitope SRKL-pT-QRIKSNTC. This mouse monoclonal antibody
(clone 4G7) was generated and purified by AnaSpec (Fremont, CA, USA).

In vitro stimulations, Ras pulldown and western blotting
Cells were washed and rested in phosphate-buffered saline at 37 °C for
30min before stimulation. Where indicated, cells were treated
with dimethyl sulfoxide (DMSO) or inhibitors (PLCγ inhibitor U73122;
Calbiochem, San Diego, CA, USA; 662035; DGK inhibitor; Sigma; D5794)
during resting. After resting, cells were stimulated with anti-CD3/anti-CD4
(each 10 μg/ml) followed by goat anti-hamster (10 μg/ml) and goat anti-rat
antibodies (1/1000), cytokines: IL-2, IL-7, IL-9 (each at 10 ng/ml, unless
otherwise noted; Peprotech, Rocky Hill, NJ, USA) or phorbol myristate
acetate (25 ng/ml). All other techniques were described previously.5

Flow cytometry and fluorescent barcoding.
Stainings were carried out in FACS buffer containing phosphate-buffered
saline without calcium and magnesium salts (phosphate-buffered saline
CMF) supplemented with 2% fetal calf serum, 2mM EDTA and 0.09% NaN3.
Where surface staining was combined with intracellular staining, the
following protocol was followed: cells were fixed with 2% paraformalde-
hyde for 20min at room temperature (RT). Cells were washed three times
with FACS buffer and permeabilized with 90% ice-cold methanol for
30 min at 4 °C. After washing, cells were incubated with antibodies
specific for phosphoproteins for 1 h at RT followed by washing and
incubation for 30 min at RT with secondary antibodies and antibodies
against surface markers. If samples were barcoded, fluorescent dyes
(Alexa Fluor 488 carboxylic acid, succinimidyl ester; Molecular Probes
(Eugene, OR, USA); A-20000; or Pacific Blue succinimidyl ester; Molecular
Probes; P-10163) were added to methanol and permeabilization took
place at RT as described.38 Samples were acquired on BD LSR II (Franklin
Lakes, NJ, USA) and analyzed with FlowJo (Ashland, OR, USA) or Cytobank
(Mountain View, CA, USA).

Calcium flux measurements
Cells were washed with IMDM (Iscove's modified Dulbecco's medium)
without serum and loaded with 2 μg/ml of the Ca2+ indicator Indo-1
(Molecular Probes; I1223) for 40min at 37 °C. Subsequently, cells were
washed and resuspended in IMDM medium. For calcium flux measure-
ments via flow cytometery, cells were stimulated with anti-CD3 antibody
(2C11, 10 μg/ml) and a baseline was registered for 20 s, then a crosslinking
antibody (goat anti-hamster immunoglobulin G; final concentration
2 μg/ml) or cytokines were added and calcium levels were measured
and analyzed on as LSR II flow cytometer (BD Biosciences).

Gene expression analysis in pediatric T-ALL patients
Patient sample collection and RasGAP expression analysis was performed
as described previously.5 In all cases, except RASAL3, multiple probe sets
were identified for the gene of interest. Data were normalized using RMA
(robust multiarray average).
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Digitonin nucleotide exchange assay
Cells were starved in phosphate-buffered saline containing 0.1% bovine
serum albumin, then permeabilized with digitonin (10 μg/ml final
concentration; Serve Electrophoresis GmbH, Heidelberg, Germany) and
loaded with 45 μCi (1.7 Mbq)/ml α-32P-GTP (which equals to 15 nM α-32P-
GTP; Hartmann Analytic GmbH, Braunschweig, Germany). Cells were lysed
at the indicated time points by adding the lysis buffer (50 mM HEPES, pH
7.5, 100mM NaCl, 10mM MgCl2, 1% NP-40) supplemented with protease
and phosphatase inhibitors (0.1 mg/ml Pefablock, 2 μg/ml leupeptin,
100 μM PMSF, 1 μg/ml pepstatin A, 100 μM sodium vanadate, 4 mM β-
glycerophosphate, 3.4 nm microcystin), GDP and GTP (both at 100 μM) and
Ras antibody Y13-259 (2.5 μg/ml). Lysates were cleared and Ras–antibody
complexes were collected on gammaBind-Sepharose. After washing, the
beads were drained dry and subjected to Cherenkov counting in a
scintillation counter for 1 min.
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